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We initiate warming treatments by translocating forest ecosystems to lower
elevation so that temperature is the main altered environmental factor. Meanwhile,
we control over the inputs and outputs of forest ecosystems, so that material
balance and energy flow can be quantified.

600 m MTEBF1 MTEBF2 MTEBF3
300 m 'V'TEBF4 MTEBF5 M MTEBF6 CBMF2 CBMF3

30m mTEBF7 I8 vTeees I MTEBFY CBMF5 CBMF6

Mountain Evergreen
Broadleaved Forest (MTEBF)

‘ ‘ ‘ ‘ ‘ ‘ MEBF4 MEBF5 MEBF6

Monsoon Evergreen
Broadleaved Forest (MEBF)

Experimental platform of forest ecosystems
translocated down an elevation gradient

Coniferous and Broadleaved
Mixed Forest (CBMF)

Open-Top chamber: 21-semi-closed chambers (depth 0.8 m X length 3 m X width 3 m) in three sites

Soil collection: MTEBF at the altitude of 600 m, CBMF at the altitude of 300 m, MEBF at the altitude of 30
m, containing three different layers of soils ( 0-20 cm, 20-40 cm and 40-70 cm)

Soil transfer: Three different layers of soils were transferred into the growth chambers correspondingly at
the three sites

!;ength 3m

- Depth 0.8 m

Width 3 iy
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Altitude (m) Vegetation Type Soil Type Planted Tree Species

600 Mountain Evergreen Yellow Soil Schima superba, Syzygium rehderianum, Machilus breviflora,
Broadleaved Forest Itea chinensis, Myrsine seguinii, Ardisia lindleyana
300 Mountain Evergreen Yellow Soil Schima superba, Syzygium rehderianum, Machilus breviflora,
Broadleaved Forest Itea chinensis, Myrsine seguinii, Ardisia lindleyana
300 . . . . . .
Coniferous and broad- . . Schima superba, Syzygium rehderianum, Machilus breviflora,
. Lateritic Soil . . . . L
leaved mixed Forest Pinus massoniana, Castanopsis hystrix, Ardisia lindleyana
30 Mountain Evergreen Yellow Soil Schima superba, Syzygium rehderianum, Machilus breviflora,
Broadleaved Forest Itea chinensis, Myrsine seguinii, Ardisia lindleyana
30 . . . . .
Coniferous and broad- . . Schima superba, Syzygium rehderianum, Machilus breviflora,
. Lateritic Soil . . . . L
leaved mixed Forest Pinus massoniana, Castanopsis hystrix, Ardisia lindleyana
30 Monsoon Evergreen Lateritic Soil Schima superba, Syzygium rehderianum, Machilus breviflora,
Broadleaved Forest Castanopsis hystrix, Ormosia pinnata, Psychotria asiatica
30 . . . . .
Monsoon Evergreen Lateritic Soil Schima superba, Syzygium rehderianum, Machilus breviflora,
Broadleaved Forest Castanopsis hystrix, Ormosia pinnata, Psychotria asiatica

Average monthly air temperature from 2012 to 2017 in MTEBF.
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Plant growth
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Downward translocation significantly increased mean
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Simulated 5-years warming increased [-glucosidase, cellobiohydrolase, and N-
acetylglucosaminidase, while decreased acid phosphatase. Phenol oxidase had an increased trend
and peroxidase was significantly decreased in 10-20 and 20-40 cm of soil. With the warming
effect, soil microbial biomass significantly increased and soil microbial community composition
altered with lower F:B and G+:G—ratio.
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The P availability increased but the NO;—N  Warming led to higher BG and NAG activities and
concentration decreased under warming in both lower AP activity in the two seasons. Enhanced BG and
wet and dry seasons. However, warming had no NAG activity by warming suggested that more nutrient
effect on exchangeable NH,"—N concentration. substrates were decomposed. Besides, warming might
(Lie et al, 2019 Biol Fertil Soils) reduce microbial demands for available P and

investment in AP enzyme synthesis.
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Plant growth

Warming significantly increased the growth of
Schima superba, Syzygium rehderianum and Itea
chinensis, but decreased the growth of Machilus

breviflora.
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Leaf nutrients

Warming decreased leaf N concentrations in all
plant species. However, there was no consistent
pattern for the effects
concentrations in the leaves of all species.
(Wu et al, 2019 Plant Ecology)
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Leaf hydraulic traits

Leaf 313C decreased but leaf hydraulic
conductance increased under warming for
these four tree species.
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Decomposition constant & value

Decomposition constant k value

Litter decomposition

Leaf litter decomposition was facilitated by experimental warming in model forests. The
litter with high quality (Schima superba) had stronger response to warming than low quality
litter (Machilus breviflora). Litter decomposition was controlled by the order: soil temperature
> litter quality > soil moisture > litter incubation forest type under experimental warming in
the subtropical China.

(Liuetal, 2017 Plant and Soil)
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Soil carbon dynamics

Soil warming changed the composition of microbial communities and enhanced the recalcitrant C
acquisition for phenol oxidase and peroxidase, which may lead to greater microbial mediated C losses
than previously estimated in subtropical forest.
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Interception/

Evapotranpiration G g
._ How do hydrological processes of
ecosystem change after warming?
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Leaching water
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While the concentration of HCO; in surface water of 3 forests and precipitation had no
difference, the warming aggravated the loss of HCO; in leaching water in MTEBF and
CBMF, and had no significant impact on DOC. It suggested that warming enhanced soil C
mineralization. But in MEBF, the concentration of HCO;™ in leaching water decreased with
warming, causing the soil temperature didn’t increase so much as air under warming of

infrared radiators.

. o h The concentration of N and P in
ol = -7 - b = . surface water at 300 m site was
o wo!'_w.  _ =.= highest, both in MTEBF and CBMF,
o K - MM a7 while it had no difference in MEBF.
3 fiiiiriiiiiiiiill And the soil water content at 300 m
site was higher than the other 2 sites
and infrared radiators warming MEBF,
s ™ which implied that the leaching
processes of N and P was more
& ) N - affected by the soil water content

for1 C e el i s “ . = _ rather than temperature.
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