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The temporal dynamics of atmospheric CO2 concentrations 
([CO2]) are inversely correlated with that of terrestrial CO2 
uptake1,2 and vegetation growth3–7. Atmospheric monitor-

ing has revealed an increase of 30–60% in the seasonal amplitude 
of CO2 concentrations over the Northern Hemisphere since the 
1960s8,9. The enhanced seasonal CO2 amplitude is largely driven by 
the increasing drawdown of the trough of the CO2 seasonal cycle in 
the Northern Hemisphere during summer, when CO2 uptake result-
ing from vegetation growth also peaks. There is also recent evidence 
that the interannual variation of terrestrial net carbon uptake cor-
relates more strongly with the peak gross primary productivity 
(GPP) than any climatic factors10–12. In addition, global lands have 
been greening since the 1980s13,14. All of these lines of evidence 
imply an increasing peak growth of vegetation, but whether such 
a trend exists globally or mainly in some specific regions remains 
unknown. A continuing increase of peak vegetation growth is eco-
logically possible, because measurements of modern-plant traits 
have found large variations in leaf photosynthetic capacity among 
and within plant functional types15, and palaeoecological studies 

have revealed high variability in the maximum individual size of 
vascular plants under different climatic regimes16. Thus, to better 
predict the temporal trends of land-sink capacity and atmospheric 
[CO2] dynamics, we need to examine whether the peak growth of 
global vegetation has been enhanced in past years, and understand 
the global distributions of the change in peak vegetation growth and 
their driving factors.

Here, we examine the trends of peak vegetation growth using 
two proxies—the maximum monthly GPP (GPPmax) and maximum 
monthly Normalized Difference Vegetation Index (NDVImax)—and 
identify their key driving factors. The global-scale GPP dataset was 
derived by a machine-learning technique known as the model tree 
ensemble (MTE) using FLUXNET measurements17. The NDVI 
data were obtained from Global Inventory Modeling and Mapping 
Studies (GIMMS) corrected for satellite sensor drift18. We inves-
tigated the difference in photosynthetic capacity among plant 
functional types using measurements of sun-induced chlorophyll 
fluorescence (SIF) from Global Ozone Monitoring Experiment 2 
(GOME-2)19, flux-tower measurements from FLUXNET10 and plant 
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functional traits from the TRY database15 (see Methods). A meta-
analysis of 466 experiments was further conducted to compare the 
contributions of elevated CO2, climate warming and nitrogen addi-
tion to peak accumulation of plant biomass (see Methods). Finally, 
using the results of different model scenarios (Supplementary 
Table 1) from the Multi-scale Synthesis and Terrestrial Model 
Intercomparison Project (MsTMIP)20, we quantified the contribu-
tions of changes in land cover, climate and atmosphere to the simu-
lated trends of global peak GPP.

The two indices of peak vegetation growth across the globe (MTE 
GPP and NDVI) consistently showed linearly increasing trends 
during the past three decades (1982–2011), with global trends of 
MTE GPPmax and NDVImax of 3.931 g C m−2 yr−2 (P <​ 0.05) and 
0.0013 yr−1 (P <​ 0.05), respectively (Fig. 1a). The observed increase 
in global averaged MTE GPPmax was consistent with the observed 
growth in atmospheric CO2 amplitude at Point Barrow (71.3° N, 
156.6° W; r2 =​ 0.32, P <​ 0.01) (Supplementary Fig. 1). Globally, the 

fastest increase in peak vegetation growth occurred in areas of 
intense agricultural activities, such as northern China, India and 
North America (Fig. 1b,c and Supplementary Fig. 2). Additionally, 
the maximum monthly enhanced vegetation index (EVImax) also 
illustrated increasing trends in these agricultural regions over 2000–
2011 (Supplementary Fig. 3).

We then applied a relative importance algorithm (see Methods) 
to attribute the annual change in NDVImax during 1982–2010 to its 
drivers (note that we did not attribute MTE GPPmax, because climate 
and land-use data were used as explanatory variables to train MTE 
GPP). The driving factors included incoming solar radiation, air 
temperature, annual precipitation, agricultural activities (for exam-
ple, fractional change of cropland), rising CO2 and nitrogen deposi-
tion. The contribution of each factor was calculated for each grid 
cell (Supplementary Fig. 4), and the factor that made the greatest 
contribution to the NDVImax variation was identified as the domi-
nant driver (Fig. 2a). At the global scale, around 65% of NDVImax 
variation could be explained by the combination of changes in 
atmospheric [CO2] (22%), the rate of nitrogen deposition (22%) 
and cropland fraction (21%) (Fig. 2a). These factors were also the 
primary explanatory factors along the global latitudinal gradient 
(Fig. 2b). Although croplands only accounted for around 13.8% of 
the land area globally (Supplementary Fig. 5a), they contributed 
to 31.8% of the global increasing GPPmax trends (Supplementary 
Fig. 5b). Also, higher intra-biome fractions of significant GPPmax 
trends were found in croplands compared with other biomes 
(Supplementary Fig. 5c).

The large contribution of agricultural activities may be 
related to the higher photosynthetic capacity that crops have 
over non-crops. Here, we analysed observed multi-level pho-
tosynthetic capacity data in three biome groups: cropland, for-
est and grassland. From 612 observations21–23 across 81 species, 
we found that crops had a higher leaf-level maximum carboxyl-
ation rate (Vcmax) (85.2 ±​ 31.0 μ​mol m−2 s−1) compared with trees 
(56.4 ±​ 26.7 μ​mol m−2 s−1) and grasses (36.9 ±​ 27.9 μ​mol m−2 s−1) 
(Fig. 3a). Ecosystem-level measurements of daily GPP across 125 
eddy-flux sites also demonstrated the higher GPPmax in cropland 
(15.9 ±​ 5.6 g C m−2 d−1) compared with forest (10.8 ±​ 3.6 g C m−2 d−1) 
and grassland (9.0 ±​ 4.8 g C m−2 d−1) (Fig. 3b). At the biome level, 
the maximum monthly SIF (SIFmax), retrieved from the GOME-2 
spectral instrument (Fig. 3c), showed that croplands had a higher 
maximum photosynthetic capacity (1.6 ±​ 0.4 mW m−2 sr−1 nm−1) 
than areas of forest (1.3 ±​ 0.5 mW m−2 sr−1 nm−1) and grassland 
(1.2 ±​ 0.5 mW m−2 sr−1 nm−1). These findings were consistent with 
previous studies that detected a higher maximum photosynthetic 
capacity in croplands than surrounding dense forests under similar 
climate conditions19,24.

As shown by the meta-analysis of 466 experiments across 719 
plant species (Supplementary Fig. 6), peak accumulation of leaf bio-
mass was significantly enhanced by elevated CO2 (95% confidence 
interval (CI): 16.7–24.1%) and nitrogen addition (12.4–18.5%), 
but to a lesser extent by climate warming (2.3–13.6%) (Fig. 3d).  
There could be multiple reasons for this. First, the results are 
consistent with the reported strong, worldwide CO2 fertiliza-
tion effect25–27 and nitrogen limitation28,29 on plant photosynthe-
sis. Second, climate warming benefited plant growth primarily 
through advancing spring leaf onset30, but could suppress plant 
peak growth by triggering summer water deficiency in dry years 
or regions31,32. Warming could also affect plant growth by increas-
ing soil nitrogen mineralization and availability33. In addition, the 
effects of elevated CO2 and nitrogen addition on plant biomass 
were significant in almost all plant functional types, whereas the 
warming effect was insignificant for herbs (Supplementary Fig. 7).  
However, it should be noted that croplands are highly managed 
by humans, so the difference in environmental contributions in 
cropland regions is uncertain.
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Fig. 1 | Enhanced monthly vegetation growth peak. a, Annual time series 
of MTE GPPmax (black line) and GIMMS NDVImax (red line) over 1982–2011. 
The shaded areas represent one s.e.m. b,c, Spatial patterns of the temporal 
trend in GIMMS NDVImax (b) and MTE GPPmax (c), with white indicating 
those areas with no significant changes (P >​ 0.05).

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNATure ECOlOGy & EVOluTIOn

Tmp

a b

30° S

0°

30° N

60° N

90° N

60° S

La
tit

ud
e

Rad Pre Agr NDE

Contribution

Area fractions (%)

0.
15 0.

20
0.

25
0.

30
CO2

Tm
p

Rad Pre
Agr

NDE CO 2

Fig. 2 | Attribution of peak monthly vegetation growth (NDVImax). a, The dominant factor influencing variations in NDVImax, defined as the driving factor 
that contributes the most to the increase (or decrease) in NDVImax, is indicated in each grid cell. The statistically significant regions (P <​ 0.05) are labelled 
with black dots. The six driving factors include incoming shortwave radiation (Rad), annual average air temperature (Tmp), annual precipitation (Pre), 
annual agriculture cropland fractional changes (Agr), nitrogen deposition (NDE) and rising CO2 (CO2). Inset, pie chart showing the area fractions of lands 
dominated by each factor. b, Contributions of the six driving factors in 15° latitude bands (90° N–60° S).

100 150 200

Vcmax (μmol m–2 s–1)

P
ro

ba
bi

lit
y 

de
ns

ity

CRO

FOR

GRA

GPPmax (g C m–2 d–1)

0.25

0.50

0.75

SIFmax (mW m–2 sr–1 nm–1)

0.5

1.5

2.0

−2 0 2

Response ratio

Warming

eCO2

0

0.010

0.020

0 50

0

50

100

150

0

1.00

0

1

2

3

0 1 2 3 4

0

0.150

0.005

P
ro

ba
bi

lit
y 

de
ns

ity

a b

c d

CRO

FOR

GRA
1.0

4

0

0.1

0.2

NDE

0

0.10

0.05

0.15

10 20 300

0

10

20

30

CRO

FOR

GRA

W
ei

gh
te

d
re

sp
on

se
 r

at
io

Fig. 3 | Higher photosynthetic capacity of croplands. The probability density functions of three datasets were calculated for cropland (CRO), forest (FOR) 
and grassland (GRA) ecosystems. a, Probability density distributions of photosynthesis capacity by leaf-level Vcmax (from the TRY database) for each biome 
type. b, Ecosystem-level flux-tower-based GPPmax across the FLUXNET2015 sites. c, Biome-level SIFmax over 2007–2015 (derived from GOME-2). The inset 
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to 1.5×​ inter-quartile range. d, Probability density functions of natural log-transformed leaf biomass response ratios to nitrogen deposition, elevated CO2 
(eCO2) and warming treatments. Inset, weighted response ratios ±​ 95% CIs of leaf biomass response ratios to the treatments using meta-analysis.
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We further examined the temporal trend of GPPmax over 1982–
2010 using 15 terrestrial biosphere models from the MsTMIP34, and 
evaluated the ability of these models to project a response of GPPmax 
to climate change (varying temperature, precipitation and radia-
tion), land cover change (LCC), rising CO2 and nitrogen deposition 
(Supplementary Figs. 8–11). Globally, CO2 fertilization and climate 
change were attributed as primary drivers of the modelled GPPmax 
trend (Fig. 4), although models disagreed on the relative importance 
of those two drivers (Supplementary Table 2). We note that the influ-
ences of nitrogen deposition might be uncertain because only a few 
models (8 out of 15) in the ensemble incorporated nitrogen limita-
tion. Here, when using the models to perform factorial simulations 
that include nitrogen deposition, rising CO2 accounted for 63 ±​ 20% 
(6.2 ±​ 1.91 g C m−2 yr−2) of the modelled GPPmax trend globally, fol-
lowed by climate change (42 ±​ 12%, 4.06 ±​ 1.17 g C m−2 yr−2), nitro-
gen deposition (1 ±​ 7%, 0.11 ±​ 0.64 g C m−2 yr−2) and LCC (−​6 ±​ 5%, 
−​0.63 ±​ 0.49 g C m−2 yr−2) (Fig. 4a, +​nitrogen). Models without 
carbon–nitrogen couplings demonstrated similar contributions of 
rising CO2 and climate change, but positive contributions of LCC 
to the modelled GPPmax trend (rising CO2: 55 ±​ 8%, 5.89 ±​ 0.87 g C  
m−2 yr−2; climate change: 37 ±​ 6%, 4 ±​ 0.64 g C m−2 yr−2; LCC: 8 ±​ 4%, 
0.85 ±​ 0.47 g C m−2 yr−2). The LCC effect might not be adequately 
captured by the MsTMIP models since most models do not explic-
itly represent crops or agricultural management35. Similarly, CO2 
fertilization and climate change effects were the main drivers of the 
modelled GPPmax trend in the three latitude zones (northern high 
latitudes, mid-latitudes and tropics), with CO2 fertilization show-
ing the largest contribution (66 ±​ 24%) to the tropical GPPmax trend 
(Fig. 4b–d). Examining the correlations of MTE GPPmax with crop-
land fractional changes (Supplementary Fig. 12), modelled LCC 
effects were consistently underestimated in all of the latitude zones 

(Fig. 4b–d). The LCC schemes of the models participating in the 
MsTMIP varied greatly35, and differences remained in the model 
processes relating to the LCCs, including cropland conversion. The 
underestimated LCC effect could also be due to the fact that agri-
cultural management represented by these models differed signifi-
cantly by the algorithms specified for the major crop types, such as 
fertilizer applications, irrigation and tillage practices36.

Our study confirms the long-term increase in global vegeta-
tion’s peak growth during the past three decades. While there is 
no single driver for the increase in peak vegetation growth, the 
intensification of agriculture24,37 and rapid increases in atmo-
spheric [CO2]13,38 and nitrogen deposition29,39 have served as the 
most important forcing factors. The expansion of cropland is 
an important driver, because the enhanced GPPmax and NDVImax 
(Fig. 1b,c) are largely located in the regions with increasing 
cropland fractions (Supplementary Fig. 12). In regions with 
decreasing cropland fractions; for example, the eastern United 
States and western Europe (Supplementary Fig. 13), no signifi-
cantly increasing trends in GPPmax and NDVImax were detected  
(Fig. 1b,c). The cropland expansion also drives the enhanced 
NDVImax in many tropical regions, partially because their peak 
vegetation growth is not sensitive to the changes in other fac-
tors. For example, the peak growth occurs in dry seasons in many 
tropical forests with high annual precipitation40. The higher peak 
growth of crops compared with non-crop plants results from not 
only their larger photosynthetic capacity from leaf to community 
levels (Fig. 3a–c), but also the intense management (irrigation and 
fertilization)41,42 in croplands during the growing season43, which 
creates nearly ideal growing conditions that are rare in unman-
aged ecosystems. Rising CO2 largely controls the trends of peak 
vegetation growth in both satellite-based and modelling analyses. 
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It supports the recent finding of a linear relationship between 
GPP responses and seasonal atmospheric CO2 amplitude in reac-
tion to rising CO2

38. The dominant role of rising CO2 rather than 
other factors in the eastern United States and western Europe has 
also been reported as part of the analysis of long-term eddy-flux 
observations44. Because nitrogen is a key factor determining plant 
photosynthetic capacity28,29, the large contribution of nitrogen 
deposition to the enhanced peak growth of vegetation is probably 
related to plant photosynthetic capacity stimulated by leaf nitro-
gen concentrations45.

Large uncertainty in terrestrial productivity simulated by ter-
restrial biosphere models has been repeatedly documented over the 
past few decades1,46. This study proposes feasible improvements to 
ecosystem productivity simulations by emphasizing peak vegeta-
tion growth. First, models differ in the design of crop types and the 
ways in which they deal with crop and agricultural management. 
MsTMIP models might underestimate the contribution of agri-
cultural activities to the global increase in peak vegetation growth, 
because most models do not explicitly represent crops and agricul-
tural management35. The findings presented here call for an explicit 
incorporation of agricultural management—such as planting dates 
and harvesting strategies, cultivar choices, and fertilizer application 
and irrigation/tillage practices—in global carbon-cycle models47–50. 
Second, further model evaluations and improvements in the control 
of leaf nitrogen concentrations and environmental variables (for 
example, temperature, radiation, day length and humidity), when 
modelling plant photosynthetic capacity (for example, Vcmax) are 
needed, as they are conventionally assumed to be constant for each 
plant functional type or to vary linearly with leaf nitrogen concen-
trations in current terrestrial biosphere models45.

It should be noted that GPPmax contributed less to the temporal 
changes in annual GPP in the tropics than other regions (Fig. 5).  
However, whether the enhanced peak growth is associated with 
an increase of global annual GPP remains uncertain. For example, 
some recent analyses have shown a minor increasing trend of global 
annual GPP during the past three decades14,51. Also, the efficiency of 
productivity (for example, the net primary productivity (NPP)-to-
GPP ratio) increases with cropland expansion, rising atmospheric 
[CO2] and enhanced nitrogen deposition (Fig. 6). Thus, more 
research efforts are still needed to explore the long-term trend of 
global NPP, which has been recognized as a measurable planetary 
boundary for the biosphere52.

The global datasets and attribution methods used here have 
their own uncertainties. Previous studies have revealed that MTE 
GPP products depend partly on climate and partly on other 
parameters (for example, the fraction of absorbed photosyntheti-
cally active radiation and light-use efficiency). Thus, the study of 

peak growth of global vegetation could be improved when inde-
pendent estimations for global GPP using SIF53 and/or carbonyl 
sulfide54 become available as global GPP tracers in the future. The 
Lindeman–Merenda–Gold (LMG) method of relative importance 
calculation allows us to differentiate between the contributions of 
correlated regressors without considering regressors’ order effects 
in a multiple linear regression55, and has been widely used to the 
attributions of observation-based datasets to global environmen-
tal change factors12,56, but caution should be taken when evaluating 
the model factorial experimental results. To address the possible 
saturation issue of NDVI in the tropics, we found that the NDVImax 
values might reach saturation when the maximum leaf area index 
(LAImax) approached a range from 4 to 5 (Supplementary Fig. 14a), 
and most saturated NDVImax regions were located in tropical forest 
(Supplementary Fig. 14b). Although the NDVI data might be satu-
rated and influenced by cloud cover in the tropics, our analyses of 
EVImax data that were less influenced by clouds than NDVI showed 
consistently increasing trends with NDVImax in many regions 
(Supplementary Fig. 3).

Overall, this study used multiple data sources and approaches to 
show an increasing peak growth of global vegetation. The findings 
of this study have several important implications. First, our results 
suggest that the recent increase of global peak vegetation growth 
is not only driven by rising CO2 and nitrogen deposition, but also 
by agricultural intensification. Second, soil carbon losses57 caused 
by croplands expansion need to be considered in the prediction 
of future terrestrial carbon sink under the increasing peak plant 
growth. Lastly, the projections of future atmospheric [CO2] season-
ality would benefit from a better understanding of the processes 
regulating peak vegetation growth, such as the seasonal dynamics 
of leaf photosynthetic capacity (Vcmax)58–60, deforestation24, natural 
disturbances such as fires43 and nutrient limitations61.

Methods
Flux-tower-based GPP data. We included 30-year eddy-covariance-flux-based 
data as large observation-based vegetation productivity datasets. The flux-tower-
based GPP products (1982–2011) were provided by the Max Plank Institute for 
Biogeochemistry (MPI-BGC), with a spatial resolution of 0.5° ×​ 0.5°, using the 
machine-learning technique MTE. FLUXNET observations of carbon dioxide, 
water and energy fluxes were upscaled with the trained MTE to generate global flux 
fields at a 0.5° ×​ 0.5° spatial resolution and monthly temporal resolution (https://
www.bgc-jena.mpg.de/geodb/projects/Home.php).
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Satellite-derived data. We used the biweekly GIMMS third-generation NDVI 
(NDVI3g; 1982–2011) dataset (available at https://ecocast.arc.nasa.gov/data/pub/
gimms/3g.v0), with a spatial resolution of 1/12° (~8 km). The GIMMS-NDVI3g 
data generated from the calibrated Advanced Very High Resolution Radiometer 
were carefully corrected for sensor degradation, intersensor differences, cloud 
cover, solar zenith angle, viewing angle effects due to satellite drift, and volcanic 
aerosols62,63. Here, we investigated the long-term NDVI data, as a proxy of plant 
photosynthesis, to monitor the vegetation growth. First, we composited the 
biweekly GIMMS-NDVI3g data to monthly temporal resolution by selecting the 
higher of the two composites in the same month. These were then aggregated to 
0.5° ×​ 0.5° to match the resolution of GPP data and meteorological data.

Given that NDVI data might suffer from saturation in high-biomass regions, 
we examined the relationship between NDVI and LAI. The GIMMS-LAI3g was 
derived from the GIMMS-NDVI3g dataset and Moderate Resolution Imaging 
Spectroradiometer (MODIS) LAI using the artificial neural network models64. 
The GIMMS-LAI3g dataset provided LAI observations at 15-d temporal 
resolution and 1/12° spatial resolution. First, we composited the 15-d GIMMS-
LAI3g data to monthly LAI. These were then aggregated to the 0.5° ×​ 0.5° spatial 
resolution. We also used monthly MODIS EVI data (MOD13C2; collection 
6), optimizing the vegetation signal with reductions in atmospheric cloud and 
aerosol contamination effects65, as a complementary proxy to provide more 
confidence in interpreting peak vegetation growth. The monthly MODIS EVI 
data at 0.05° spatial resolution (2000–2011) were obtained from the online 
Data Pool at the National Aeronautics and Space Administration (NASA) Land 
Processes Distributed Active Archive Centre located at the US Geological 
Survey Earth Resources Observation and Science Centre (https://lpdaac.usgs.
gov). The gridded EVI datasets include pixel-level quality assurance flags, as 
well as statistics of EVI quality and input data. To obtain high-quality EVI 
composites, we filtered the original data using the following criteria66 based on 
the quality assurance layers: (1) corrected product produced at ideal quality 
for all bands; (2) highest quality for bands 1–7; (3) atmospheric correction; (4) 
adjacency correction; (5) MOD35 cloud flag indicated ‘clear’; (6) no detections 
of cloud-shadow; and (7) low or average aerosol quantities. Gaps remaining 
after quality assurance filtering were filled by interpolation in the temporal 
dimension, computing the values of gaps by fitting linearly between the two 
adjacent points. The time series with more than two consecutive gaps were 
excluded from further analyses. The data were then mosaicked and re-projected 
using the MODIS Reprojection Tool, and mosaicked images were resampled 
into 0.5° ×​ 0.5° (latitude ×​ longitude) resolution using the nearest-neighbour 
algorithm.

We analysed the SIF data to investigate vegetation photosynthetic capacity 
at the biome level. The SIF data were produced using spectra from the GOME-2 
instrument onboard the MetOp-A platform19. SIF retrievals were performed 
in the 715–758 nm spectral window with ~0.5 nm spectral resolution67. The 
SIF products (https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F) 
used in this study were GOME2_F level 3 monthly retrievals (2007–2015) 
with a spatial resolution of 0.5° ×​ 0.5°. The GOME-2 level 3 SIF retrievals were 
quality filtered, aggregated as monthly averages and gridded globally. Previous 
studies have reported that SIF could be a robust indicator of GPP, although the 
uncertainties existed in the GPP-SIF relationship19,68.

Gridded GPPmax, NDVImax and SIFmax datasets were compiled annually by 
picking out the maximum from the monthly composites of the same year in 
each grid cell. In particular, the long-term MTE GPPmax and NDVImax products 
were identified to monitor the linear trends of global peak vegetation growth in 
the past three decades. The spatial patterns of temporal trends in each dataset 
were calculated using a least squares linear regression for each grid. All the data 
calculations were accomplished in R (http://www.r-project.org/).

Forcing datasets. Forcing datasets were involved to investigate the contribution 
of multiple factors to annual changes in NDVImax over 1982–2010, including 
radiation, air temperature, precipitation, the fraction of cropland, nitrogen 
deposition and rising [CO2]. Annual climatology (including air temperature and 
precipitation) data with a spatial resolution of 0.5° ×​ 0.5° were obtained from 
meteorological data stored at the Climate Research Unit (CRU) at the University 
of East Anglia (CRU TS 3.23)69. We obtained 0.5° ×​ 0.5° gridded data of annual 
downward shortwave radiation at the surface (W m−2) from the Terrestrial 
Hydrology Research Group at Princeton University70 (http://hydrology.princeton.
edu/data/pgf/v2/0.5deg/monthly/). The annual global gridded (0.5° ×​ 0.5°) 
cropland fraction change dataset (1982–2010) was obtained from Hurtt et al.71 
(http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=​1248) and used as the agriculture 
driving factor in analysing the dominators of observed peak plant growth 
(NDVImax). Here, the global gridded (0.5° ×​ 0.5°) atmospheric components were 
change data for atmospheric nitrogen deposition and atmospheric [CO2]. Both of 
the datasets were obtained from the MsTMIP environmental driver datasets for the 
historical period36,72. The atmospheric [CO2] data prepared for the MsTMIP were 
downloaded from the Oak Ridge National Laboratory Distributed Active Archive 
Center at a monthly time scale, then averaged to the annual mean to match the 
NDVImax data. Based on Dentener's maps and introduced spatiotemporal variation 
from nitrogen emissions73, time-varying annual nitrogen deposition rate (NHx–N 
and NOy–N) data were used in this study.

Relative importance calculation. We used a relative importance analysis 
approach to quantify the relative contributions of each factor (for example, 
radiation, air temperature, precipitation, the fraction of cropland, nitrogen 
deposition and rising CO2) to the annual changes of NDVImax in each grid 
cell, expressed as the Pearson correlation in a multiple linear regression 
(NDVImax =​ b0 +​ b1 ×​ radiation +​ b2 ×​ temperature +​ b3 ×​ precipitation +​ b4 ×​ cropland 
fraction +​ b5 ×​ nitrogen deposition +​ b6 ×​ CO2 +​ ε). ε represented other drivers that 
were not considered but might contribute to NDVImax variation. The algorithm 
was performed with the ‘relaimpo’ package in R, which was based on variance 
decomposition for multiple linear regression models74. The ‘relaimpo’ package 
provides six different methods for analysing the relative importance of each 
regressor in linear regression. We chose one of the most computer-intensive 
and commonly used methods named 'LMG', which allows differentiation of the 
contribution of different correlated regressors in a multiple linear regression. In 
multiple regression models, the relative importance assessment strongly depended 
on the order of the regressors. The LMG method estimated the relative importance 
(RI) of each variable by decomposing the sum of squares into non-negative 
contributions shared by each variable, and the LMG values were obtained by 
averaging the sequential sum of squares (r2) for all possible orders. Finally, all RI 
values were normalized (divided by r2) to sum to 1.

In each grid cell, we calculated the contributions of each factor to interannual 
NDVImax (Supplementary Fig. 4). Then, the global attributions to NDVImax were 
calculated by averaging the values of contributors at the pixel level (statistically 
significant pixels; P <​ 0.05).

In situ observation dataset. To test whether crops have higher photosynthetic 
capacity than natural plant species, we investigated the measured leaf-level 
maximum carboxylation rate (Vcmax) and flux-tower-observed GPPmax at the 
ecosystem level, which were analysed using the probability density function. 
The leaf-level maximum carboxylation rate (Vcmax, μ​mol m−2 s−1) data of 612 
observations across 81 plant species were compiled from the TRY database15 
(http://www.try-db.org)—a coverage of plant trait data representing plant 
functional diversity at the global scale. Leaf Vcmax data were then divided into 
crops, trees and grasses to explore the differences in probability density among 
species21–23. Photosynthetic capacity simulations within earth system models 
were closely associated with Vcmax

45. The measured multi-species leaf Vcmax in 
Fig. 3a indicates the overall difference in leaf-level plant photosynthetic capacity 
differences across crops, trees and grasses.

We also used eddy-covariance-flux-tower data from 125 flux sites (including 
forest, grassland and cropland) across the globe (see Supplementary Data 1 for 
a full list). These GPP flux data were obtained from the FLUXNET2015 Tier 1 
dataset (November 2016 release; http://fluxnet.fluxdata.org/data/fluxnet2015-
dataset/). Flux-tower GPP values were calculated as the mean of both daytime 
and night-time partition methods after a data quality check. According to the 
methods and criteria in Reichstein et al.75 and Papale et al.76, data for each site year 
in the database were filtered. Due to the inevitable data uncertainties arising from 
indirect measurement and some negative values in some site years, only site years 
with more than 300 daily estimates were chosen from the database. There were 960 
site years of GPP data in total. Comprehensive fit functions and algorithms were 
developed to derive the flux-tower GPPmax of each site in different biomes. Details 
on the flux GPPmax calculation methods are described in Xia et al.10.

Meta-analysis of leaf biomass data. We conducted a systematic meta-analysis 
to further explain the higher contributions of atmospheric [CO2] and nitrogen 
deposition relative to climate change on NDVImax, according to the guidelines 
listed in the PRISMA (preferred reporting items for systematic reviews and 
meta-analyses) statement (http://www.prisma-statement.org/). We searched 
peer-reviewed and primary research papers before December 2016 from the Web 
of Science. Candidate papers were individually examined for data meeting the 
following criteria: (1) both control and treatment existed; (2) the responses of 
terrestrial plant growth to changes in environmental factors (CO2, nitrogen and 
temperature) were provided at the species level, and the means (X), sample sizes 
(n), and s.d. or s.e.m. values under the control and treatment were also provided; 
and (3) the examined responsive variables encompassed plant parts; for example, 
whole, aboveground, belowground, leaf, root, stem, and so on. Since sample 
sizes and variance of the original studies were included in our data collections, 
our meta-analysis followed the guidelines set by Vetter et al.77. Based on these 
guidelines, a database of 466 studies (see Supplementary Data 2 for a full list) 
investigating the response of plant growth under treatment (warming, nitrogen 
addition and elevated CO2) was established for further analysis (Supplementary 
Fig. 6). Here, we further examined the responses of leaf biomass to warming, 
nitrogen addition and elevated CO2 using this database. Moreover, we separated 
the experimental data into different plant functional types (woody, herb, tree, 
shrub, grass or forb) and climatic zones (tropical, temperate or boreal). Overall, our 
meta-analysis considered leaf-growth data from 92 observations for warming, 234 
observations for nitrogen addition and 113 observations for elevated CO2.

For the studies that provided s.e.m., s.d. was calculated by:

. . = . . . ns d s e m (1)
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The meta-analysis followed the techniques described in Hedges et al.78. 
The response of leaf growth to treatments was estimated using the natural log-
transformed response ratio (RR):

= ∕X Xln[RR] ln[ ] (2)T C

where XC is the mean value of leaf biomass under the control treatment and XT 
denotes the mean value of the corresponding treatment (warming, nitrogen addition 
or elevated CO2). The variance of the natural log-transformed response ratio was:
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where s.d.C and s.d.T are the s.d. values of XC and XT, and nC and nT are the sample 
sizes of XC and XT, respectively.

Then, a mixed-effects model was used to obtain the weighted response ratio 
of leaf growth to warming, nitrogen addition and elevated CO2, respectively. The 
weighted response ratio (RR++) was calculated as below (m and k are the number of 
groups and comparison, respectively):
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where W is the weight (1/v) of each RR, and its s.e.m. was calculated as below:
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The 95% CI was RR++ ±​ 1.96 ×​ S(RR++), and was generated by bootstrapping the 
data using MetaWin 2.1 (Sinauer Associates). The results were back-transformed 
and are represented as percentage change by (exp(RR++) −​1) ×​ 100%. The response 
was considered significant if the 95% CI did not overlap with zero.

Processing model outputs from MsTMIP. To further evaluate the simulated 
global peak vegetation growth trends and their driving factors, GPPmax of 15 
MsTMIP models were used during 1982–2010. The models were forced with 
consistent driver datasets. The simulation protocol and details of the forcing data 
were described by Huntzinger et al.20 and Wei et al.36. We performed a series of 
experimental simulations to analyse the four main drivers (climate change, LCC, 
CO2 fertilization and nitrogen deposition) of simulated global peak vegetation 
growth: initial conditions, with all environmental drivers constant (RG1); varying 
climate (temperature, precipitation and radiation) only (SG1); varying climate and 
land cover (SG2); varying climate, land cover and CO2 (SG3); and varying climate, 
land cover, CO2 and nitrogen deposition (BG1). Simulations SG1-RG1, SG2-SG1, 
SG3-SG2 and BG1-SG3 were used to evaluate the effects of climate change, LCC, 
CO2 fertilization and nitrogen deposition on peak vegetation growth, respectively. 
It should be noted that not all 15 models submitted all 4 sensitivity simulations, 
especially for nitrogen deposition (Supplementary Table 1). Thus, we conducted  
the factorial experiments in two sub-ensembles: eight models with nitrogen 
limitation (+​nitrogen) and seven models without nitrogen limitation  
(−​nitrogen). An attribution analysis for each individual model in the sub-ensembles 
was completed, then values were averaged across the models. Additionally, current 
model intercomparison projects consider the climate change scenario (SG1) as a 
combination of temperature, precipitation and radiation, making direct comparison 
with the relative importance calculations less comprehensive. We recommend that 
future model intercomparison projects request outputs from model simulations 
under a separated climate factor scenario to allow for more direct comparisons with 
observation-based attributions. We also request a possible scenario incorporating 
a combination of varying climate and varying CO2 to attribute the LCC effect in 
future model intercomparison experiments.

Carbon use efficiency (CUE) dataset. The CUE was calculated as the ratio of 
NPP to GPP. Both in situ GPP and NPP data were obtained from the database 
in DeLucia et al.79, Campioli et al.80 and Chen et al.81. Here, we present a CUE 
dataset of 139 site years (Supplementary Fig. 15) comprising forests, grasslands and 
croplands. According to the management status and treatments, sites were divided 
into natural, elevated CO2 and fertilized.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The code used to generate the results of this study are available 
from the corresponding author upon request.

Data availability
The MTE GPP datasets are available at https://www.bgc-jena.mpg.de/geodb/
projects/Home.php. The Advanced Very High Resolution Radiometer GIMMS-

NDVI3g datasets are available at https://ecocast.arc.nasa.gov/data/pub/gimms/3g.
v0. The GOME-2 SIF datasets are available at https://avdc.gsfc.nasa.gov/pub/data/
satellite/MetOp/GOME_F. The MODIS EVI data are available from the NASA 
Land Processes Distributed Active Archive Center at https://lpdaac.usgs.gov. The in 
situ GPP observations are available from FLUXNET2015 at http://fluxnet.fluxdata.
org/data/fluxnet2015-dataset/. The Vcmax data are available from the TRY database15 
at http://www.try-db.org. The CRU TS 3.23 climate datasets are available from the 
CRU (https://crudata.uea.ac.uk/cru/data/hrg/). The shortwave radiation datasets 
are available from the Terrestrial Hydrology Research Group at http://hydrology.
princeton.edu/data/pgf/v2/0.5deg/monthly/. The MsTMIP modelling results are 
available at https://nacp.ornl.gov/mstmipdata/.
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When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
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Data collection No software was used for data collection. 

Data analysis We used Metawin 2.1 and the R version 3.3.1.
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Study description This study presents an observational evidence that the peak vegetation growth has been  increasing in the past three decades, based 
on the global satellite data and observation-based flux data sets.

Research sample We used the satellite-derived NDVI data, GPP flux data , SIF data and climate data over the global lands. The spatial resolution of each 
global data set determines the number of pixels used in the study.

Sampling strategy We defined the groups based on the existing biome maps and plant species.

Data collection Global remote sensing data, climate data and in-situ observational data were downloaded from the URLs stated in the article. 466 
eligible studies for  meta-analysis were found using Web of Science.

Timing and spatial scale The global GPP, GIMMS NDVI and climate data used in our study were from 1982 to 2011 at a 0.5 degree spatial resolution and a 
monthly temporal resolution. The MODIS EVI data were provided at a 0.5 degree spatial resolution and a monthly temporal 
resolution over 2000-2011. The SIF products were GOME2_F level 3 monthly retrievals  at  a 0.5 degree spatial resolution during 
2007-2015. Research papers published before December 2016  from Web of Science were used in the meta-analysis.

Data exclusions No data were excluded from the data sets in all the analyses. 

Reproducibility Our analyses were mainly based on public satellite products and observational data, and the results could be reproduced.

Randomization We performed the global trend analysis for each pixel with satellite images and GPP data set, thus randomization is not relevant to 
our study. 

Blinding The majority of our study were based on existing data, therefore blinding is not relevant to our study.

Did the study involve field work? Yes No
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